Friday 10 November 2017

Moving Average Efficient Algorithm


Ich versuche, den gleitenden Durchschnitt eines Signals zu berechnen. Der Signalwert (ein Doppel) wird zu beliebigen Zeiten aktualisiert. Ich bin auf der Suche nach einem effizienten Weg, um seine Zeit gewichteten Durchschnitt über ein Zeitfenster, in Echtzeit zu berechnen. Ich könnte es selbst tun, aber es ist schwieriger als ich dachte. Die meisten der Ressourcen Ive gefunden über das Internet berechnen gleitenden Durchschnitt des periodischen Signals, aber Mine Updates zu beliebigen Zeit. Kennt jemand gute Ressourcen für die Der Trick ist die folgende: Sie erhalten Updates zu beliebigen Zeiten über void update (int Zeit, float-Wert). Allerdings müssen Sie auch nachverfolgen, wenn ein Update fällt aus dem Zeitfenster, so dass Sie einen Alarm, der bei der Zeit N, die die vorherige Aktualisierung entfernt wird immer wieder in der Berechnung berücksichtigt. Wenn dies in Echtzeit geschieht, können Sie das Betriebssystem anfordern, einen Aufruf einer Methode void dropoffoldestupdate (int time) aufzurufen, die zum Zeitpunkt N aufgerufen werden soll. Wenn es sich um eine Simulation handelt, können Sie keine Hilfe vom Betriebssystem bekommen und müssen dies tun Tun Sie es manuell. In einer Simulation würden Sie Methoden mit der angegebenen Zeit als Argument aufrufen (was nicht mit der Echtzeit korreliert). Eine vernünftige Annahme ist jedoch, dass die Anrufe so gewartet werden, dass die Zeitargumente zunehmen. In diesem Fall müssen Sie eine sortierte Liste der Alarmzeitwerte pflegen und bei jedem Aktualisierungs - und Leseaufruf überprüfen, ob das Zeitargument größer ist als der Kopf der Alarmliste. Während es größer ist, tun Sie die alarmbezogene Verarbeitung (Drop off der ältesten Aktualisierung), entfernen Sie den Kopf und überprüfen Sie erneut, bis alle Alarme vor der angegebenen Zeit verarbeitet werden. Anschließend den Update-Aufruf durchführen. Ich habe bis jetzt angenommen, dass es offensichtlich ist, was Sie für die tatsächliche Berechnung tun würden, aber ich erarbeiten gerade für den Fall. Ich nehme an, Sie haben eine Methode float read (int Zeit), die Sie verwenden, um die Werte zu lesen. Das Ziel ist, diesen Anruf so effizient wie möglich zu machen. So berechnen Sie den gleitenden Durchschnitt nicht jedes Mal, wenn die Lesemethode aufgerufen wird. Stattdessen müssen Sie den Wert der letzten Aktualisierung oder des letzten Alarms vorberechnen und diesen Wert durch ein paar Gleitkommaoperationen anpassen, um die Zeit seit der letzten Aktualisierung zu berücksichtigen. (D. h. eine konstante Anzahl von Operationen, außer dass möglicherweise eine Liste von aufgestauten Alarmen verarbeitet wird). Hoffentlich ist dies klar - das sollte ein ganz einfacher Algorithmus und sehr effizient sein. Weitere Optimierung. Einer der verbleibenden Probleme ist, wenn eine große Anzahl von Updates innerhalb des Zeitfensters auftreten, dann gibt es eine lange Zeit, für die es weder liest noch Updates, und dann ein Lesen oder Update kommt entlang. In diesem Fall ist der obige Algorithmus ineffizient, wenn der Wert für jedes der Aktualisierungen, die herunterfallen, inkremental aktualisiert wird. Dies ist nicht notwendig, weil wir nur kümmern uns um die letzte Aktualisierung über das Zeitfenster so, wenn es einen Weg, um effizient drop off alle älteren Updates, würde es helfen. Um dies zu tun, können wir den Algorithmus ändern, um eine binäre Suche nach Updates durchzuführen, um das neueste Update vor dem Zeitfenster zu finden. Wenn es relativ wenige Updates gibt, die gelöscht werden müssen, dann kann man den Wert für jedes heruntergelassene Update inkremental aktualisieren. Aber, wenn es viele Updates gibt, die gelöscht werden müssen, dann kann man den Wert vom Kratzer neu berechnen, nachdem er weg von den alten Updates. Anhang auf Inkrementelle Berechnung: Ich sollte klären, was ich meine durch inkrementelle Berechnung oben in den Satz zwicken diesen Wert durch ein paar Gleitkomma-Operationen, um für den Ablauf der Zeit seit dem letzten Update. Initiale nicht-inkrementale Berechnung: dann über die relevanten Daten in der Reihenfolge der zunehmenden Zeit iterieren: movingaverage (sum lastupdate timesincelastupdate) / windowlength. Nun, wenn genau ein Update fällt aus dem Fenster, aber keine neuen Updates eintreffen, stellen Sie die Summe als: (beachten Sie, es ist Priorupdate, deren Timestamp geändert, um den Beginn der letzten Fenster beginnt). Und wenn genau ein Update in das Fenster eintritt, aber keine neuen Updates abfallen, passen Sie die Summe als an: Wie offensichtlich sein sollte, ist dies eine grobe Skizze, aber hoffentlich zeigt es, wie Sie den Durchschnitt so halten können, dass es O (1) Operationen pro Update ist Auf amortisierte Basis. Aber beachten Sie weitere Optimierung im vorherigen Absatz. Beachten Sie auch Stabilitätsprobleme, auf die in einer älteren Antwort hingewiesen wird, was bedeutet, dass Gleitkomma-Fehler über eine große Anzahl derartiger Inkrementierungsoperationen akkumulieren können, so dass es eine Abweichung von dem Ergebnis der Vollberechnung gibt, die für die Anwendung signifikant ist. Wenn eine Annäherung OK und theres eine minimale Zeit zwischen Proben ist, könnten Sie versuchen, Super-Sampling. Sie haben ein Array, das gleichmäßig beabstandete Zeitintervalle repräsentiert, die kürzer als das Minimum sind, und zu jedem Zeitpunkt die letzte empfangene Probe speichern. Je kürzer das Intervall, desto näher ist der Mittelwert auf den wahren Wert. Der Zeitraum sollte nicht größer als die Hälfte des Minimums sein, oder es besteht die Möglichkeit, eine Stichprobe zu fehlen. Antwortete Dec 15 11 at 18:12 antwortete 15 Dez, um 22:38 Uhr Danke für die Antwort. Eine Verbesserung, die erforderlich wäre, um tatsächlich Quotecachequot den Wert des Gesamtdurchschnitts, so dass wir don39t Schleife die ganze Zeit. Auch kann es ein kleiner Punkt sein, aber wäre es nicht effizienter, ein deque oder eine Liste zu verwenden, um den Wert zu speichern, da wir davon ausgehen, dass die Aktualisierung in der richtigen Reihenfolge kommen wird. Einfügen wäre schneller als in der Karte. Ndash Arthur Ja, Sie könnten den Wert der Summe zwischenspeichern. Subtrahieren Sie die Werte der Proben, die Sie löschen, fügen Sie die Werte der Proben, die Sie einfügen. Auch, ja, ein dequeltpairltSample, Dategtgt könnte effizienter sein. Ich wählte Karte für Lesbarkeit, und die Leichtigkeit der Aufruf der Karte :: upperbound. Wie immer, schreiben Sie den richtigen Code zuerst, dann Profil und messen inkrementelle Änderungen. Ndash Rob Dez 16 11 um 15:00 Hinweis: Anscheinend ist dies nicht der Weg, um dies zu nähern. Lassen Sie es hier als Referenz auf, was ist falsch mit diesem Ansatz. Überprüfen Sie die Kommentare. AKTUALISIERT - basierend auf Olis Kommentar. Nicht sicher über die Instabilität, dass er aber reden. Verwenden Sie eine sortierte Karte der Ankunftszeiten mit Werten. Bei der Ankunft eines Wertes addieren Sie die Ankunftszeit zur sortierten Karte zusammen mit ihrem Wert und aktualisieren Sie den gleitenden Durchschnitt. Warnung dies ist Pseudocode: Dort. Nicht vollständig ausgefuellt, aber Sie bekommen die Idee. Was zu beachten ist. Wie ich schon sagte ist Pseudocode. Youll Notwendigkeit, eine passende Karte zu wählen. Entfernen Sie nicht die Paare, während Sie iterieren, indem Sie den Iterator ungültig machen und müssen wieder neu starten. Siehe Olis Kommentar unten auch. Antwort # 2 am: Dezember 15, 2010, um 12:22 Uhr Dies doesn39t Arbeit: es doesn39t berücksichtigen, welcher Anteil der Fensterlänge jeder Wert für vorhanden ist. Auch dieser Ansatz der Addition und dann Subtraktion ist nur stabil für Ganzzahl-Typen, nicht Floaten. Ndash Oliver Charlesworth OliCharlesworth - sorry Ich habe einige wichtige Punkte in der Beschreibung (doppelt und zeitgewichtet) verpasst. Ich werde aktualisieren. Vielen Dank. Ndash Dennis Dec 15 11 at 12:33 Die Zeitgewichtung ist ein weiteres Problem. Aber das ist nicht das, worüber ich rede. Ich bezog sich auf die Tatsache, dass, wenn ein neuer Wert zuerst das Zeitfenster betritt, sein Beitrag zum Durchschnitt minimal ist. Ihr Beitrag steigt, bis ein neuer Wert eintritt. Ndash Oliver Charlesworth Dez 15 11 um 12: 35Zuzeit entwickle ich ein grafisches LCD-System, um Temperaturen, Ströme, Spannungen, Energie und Energie in einem Wärmepumpensystem anzuzeigen. Die Verwendung eines grafischen LCD bedeutet, dass die Hälfte meines SRAM und 75 meines Blitzes durch einen Schirmpuffer und Schnüre verbraucht worden sind. Ich sehe derzeit min / max / Durchschnittswerte für die Energie an. Um Mitternacht, wenn die tägliche Zahl zurückgesetzt wird, prüft das System, ob der Verbrauch für den Tag über oder unter dem vorherigen Minimum oder Maximum liegt, und speichert den Wert. Der Durchschnitt wird berechnet, indem der kumulative Energieverbrauch durch die Anzahl der Tage dividiert wird. Ich möchte den täglichen Durchschnitt über die letzte Woche und Monat (4 Wochen aus Gründen der Einfachheit), d. h. Derzeit geht es darum, ein Array von Werten für die letzten 28 Tage aufrechtzuerhalten und einen Durchschnitt über das gesamte Array für die monatlichen und letzten 7 Tage für wöchentlich zu berechnen. Zuerst war ich dies mit einem Array von Schwimmern (wie die Energie in Form von 12.12kWh), aber das war mit 28 4 Byte 112 Bytes (5.4 von SRAM). Ich habe nichts dagegen, nur einen einzigen Dezimalpunkt der Auflösung, so dass ich geändert, um mit uint16t und die Multiplikation der Zahl mit 100. Dies bedeutet, dass 12.12 wird als 1212 dargestellt, und ich teile durch 100 für die Anzeige. Die Größe des Arrays ist jetzt auf 56 Bytes (viel besser). Es gibt keine triviale Möglichkeit, die Figur auf einen uint8t zu reduzieren, den ich sehen kann. Ich könnte den Verlust einer Dezimalstelle tolerieren (12,1kWh anstatt 12,12kWh), aber der Verbrauch ist häufig höher als 25,5kWh (255 ist der höchste Wert, der durch eine 8-Bit-Ganzzahl ohne Vorzeichen dargestellt wird). Der Verbrauch lag nie unter 10,0 kWh oder über 35,0 kWh, so daß ich 10 von den gespeicherten Zahlen subtrahieren konnte, aber ich weiß, dass wir eines Tages diese Grenzen überschreiten werden. Ich testete dann Code, 9-Bit-Werte in ein Array zu packen. Dies ergibt einen Bereich von 0-51,2 kWh und verwendet insgesamt 32 Bytes. Allerdings ist der Zugriff auf ein Array wie dieses ziemlich langsam, vor allem, wenn Sie über alle Werte iterieren müssen, um einen Durchschnitt zu berechnen. Also meine Frage ist - gibt es eine effizientere Methode der Berechnung eines gleitenden Durchschnitt mit drei Fenstern - Lebensdauer, 28 Tage und 7 Tage Effizienz bedeutet kleiner in Bezug auf SRAM Nutzung, aber ohne die Strafe von riesigen Code. Kann ich vermeiden, die Speicherung aller Werte gefragt Ich habe gedacht und du hast Recht. So dass technisch macht meine Antwort falsch. Ich investiere noch mehr Zeit und Geduld. Vielleicht etwas aus der Box. Ich lasse Sie wissen, wenn ich mit etwas kommen. Wir machen so etwas viel an meinem Arbeitsplatz. Lassen Sie mich fragen. Sorry über die Verwirrung. Ndash Aditya Somani Mar 8 14 am 17:15 gibt es eine effizientere Methode der Berechnung eines gleitenden Durchschnitt mit. 28 Tage und 7 Tage. Müssen sich an 27 Tage Geschichte erinnern. Vielleicht erhalten Sie nahe genug Speicherung 11 Werte anstelle von 28 Werten, vielleicht so etwas wie: Mit anderen Worten, anstatt jedes Detail von jedem Tag für die letzten 27 Tage zu speichern, (a) speichern 7 oder so Werte der detaillierten täglichen Informationen für die Vergangenheit 7 oder so Tage, und auch (b) speichern Sie 4 oder so zusammengefasste Werte der gesamten oder durchschnittlichen Informationen für jede der letzten 4 oder so Wochen. Wie andere erwähnt haben, sollten Sie ein IIR (endlose Impulsantwort) Filter anstatt der FIR (Finite Impulse Response) Filter, den Sie jetzt verwenden. Es gibt mehr dazu, aber auf den ersten Blick werden FIR-Filter als explizite Windungen und IIR-Filter mit Gleichungen implementiert. Das besondere IIR-Filter, das ich viel in Mikrocontrollern verwende, ist ein einpoliges Tiefpaßfilter. Dies ist das digitale Äquivalent eines einfachen R-C-Analogfilters. Für die meisten Anwendungen haben diese bessere Eigenschaften als der Kastenfilter, den Sie verwenden. Die meisten Verwendungen eines Box-Filter, die ich begegnet bin, sind ein Ergebnis von jemand nicht Aufmerksamkeit in der digitalen Signalverarbeitung Klasse, nicht als Ergebnis der Notwendigkeit ihrer besonderen Eigenschaften. Wenn Sie nur wollen, um hohe Frequenzen zu dämpfen, dass Sie wissen, Rauschen sind, ist ein einpoliges Tiefpassfilter besser. Der beste Weg, um ein digitales in einem Mikrocontroller zu implementieren, ist in der Regel: FILT lt - FILT FF (NEW - FILT) FILT ist ein Stück persistenten Zustand. Dies ist die einzige persistente Variable, die Sie benötigen, um diesen Filter zu berechnen. NEU ist der neue Wert, den der Filter mit dieser Iteration aktualisiert. FF ist die Filterfraktion. Die die Schwere des Filters einstellt. Betrachten Sie diesen Algorithmus und sehen Sie, dass für FF 0 der Filter unendlich schwer ist, da sich der Ausgang nie ändert. Für FF 1 ist das eigentlich gar kein Filter, da der Ausgang nur dem Eingang folgt. Nützliche Werte sind dazwischen. Bei kleinen Systemen wählen Sie FF auf 1/2 N, so dass die Multiplikation mit FF als Rechtsverschiebung um N Bits erreicht werden kann. Beispielsweise kann FF 1/16 betragen und das Multiplizieren mit FF daher eine Rechtsverschiebung von 4 Bits. Andernfalls benötigt dieses Filter nur eine Subtraktion und eine Addition, obwohl die Zahlen in der Regel größer als der Eingangswert sein müssen (mehr über die numerische Genauigkeit in einem separaten Abschnitt weiter unten). Ich normalerweise nehmen A / D-Messwerte deutlich schneller als sie benötigt werden und wenden Sie zwei dieser Filter kaskadiert. Dies ist das digitale Äquivalent von zwei R-C-Filtern in Serie und dämpft um 12 dB / Oktave über der Rolloff-Frequenz. Für A / D-Messungen ist es jedoch gewöhnlich relevanter, den Filter im Zeitbereich zu betrachten, indem er seine Sprungantwort betrachtet. Dies zeigt Ihnen, wie schnell Ihr System eine Änderung sehen wird, wenn die Sache, die Sie messen, ändert. Zur Erleichterung der Gestaltung dieser Filter (was nur bedeutet Kommissionierung FF und entscheiden, wie viele von ihnen zu kaskadieren), benutze ich mein Programm FILTBITS. Sie legen die Anzahl der Schaltbits für jede FF in der kaskadierten Filterreihe fest und berechnen die Schrittantwort und andere Werte. Eigentlich habe ich in der Regel laufen diese über mein Wrapper-Skript PLOTFILT. Dies führt FILTBITS, die eine CSV-Datei macht, dann die CSV-Datei. Beispielsweise ist hier das Ergebnis von PLOTFILT 4 4: Die beiden Parameter zu PLOTFILT bedeuten, dass es zwei Filter gibt, die von dem oben beschriebenen Typ kaskadiert sind. Die Werte von 4 geben die Anzahl der Schaltbits an, um die Multiplikation mit FF zu realisieren. Die beiden FF-Werte sind in diesem Fall 1/16. Die rote Spur ist die Einheit Schritt Antwort, und ist die Hauptsache zu betrachten. Dies bedeutet beispielsweise, dass sich der Ausgang des kombinierten Filters auf 90 des neuen Wertes in 60 Iterationen niederschlägt, falls sich der Eingang sofort ändert. Wenn Sie ca. 95 Einschwingzeit kümmern, dann müssen Sie ca. 73 Iterationen warten, und für 50 Einschwingzeit nur 26 Iterationen. Die grüne Kurve zeigt Ihnen den Ausgang einer einzelnen Amplitude. Dies gibt Ihnen eine Vorstellung von der zufälligen Rauschunterdrückung. Es sieht aus wie keine einzelne Probe wird mehr als eine 2,5 Änderung in der Ausgabe verursachen. Die blaue Spur soll ein subjektives Gefühl geben, was dieser Filter mit weißem Rauschen macht. Dies ist kein strenger Test, da es keine Garantie gibt, was genau der Inhalt der Zufallszahlen war, die als der weiße Rauscheneingang für diesen Durchlauf von PLOTFILT ausgewählt wurden. Seine nur, um Ihnen ein grobes Gefühl, wie viel es gequetscht werden und wie glatt es ist. PLOTFILT, vielleicht FILTBITS, und viele andere nützliche Dinge, vor allem für PIC-Firmware-Entwicklung ist verfügbar in der PIC Development Tools-Software-Release auf meiner Software-Downloads-Seite. Hinzugefügt über numerische Genauigkeit Ich sehe aus den Kommentaren und nun eine neue Antwort, dass es Interesse an der Diskussion der Anzahl der Bits benötigt, um diesen Filter zu implementieren. Beachten Sie, dass das Multiplizieren mit FF Log 2 (FF) neue Bits unterhalb des Binärpunkts erzeugt. Bei kleinen Systemen wird FF gewöhnlich mit 1/2 N gewählt, so daß diese Multiplikation tatsächlich durch eine Rechtsverschiebung von N Bits realisiert wird. FILT ist daher meist eine feste Ganzzahl. Beachten Sie, dass dies ändert keine der Mathematik aus der Prozessoren Sicht. Wenn Sie beispielsweise 10-Bit A / D-Messwerte und N 4 (FF 1/16) filtern, benötigen Sie 4 Fraktionsbits unter den 10-Bit-Integer-A / D-Messwerten. Einer der meisten Prozessoren, youd tun 16-Bit-Integer-Operationen aufgrund der 10-Bit-A / D-Lesungen. In diesem Fall können Sie immer noch genau die gleichen 16-Bit-Integer-Opertions, aber beginnen mit der A / D-Lesungen um 4 Bits verschoben verschoben. Der Prozessor kennt den Unterschied nicht und muss nicht. Das Durchführen der Mathematik auf ganzen 16-Bit-Ganzzahlen funktioniert, ob Sie sie als 12,4 feste oder wahre 16-Bit-Ganzzahlen (16,0 Fixpunkt) betrachten. Im Allgemeinen müssen Sie jedem Filterpole N Bits hinzufügen, wenn Sie aufgrund der numerischen Darstellung kein Rauschen hinzufügen möchten. Im obigen Beispiel müsste das zweite Filter von zwei 1044 18 Bits haben, um keine Informationen zu verlieren. In der Praxis auf einer 8-Bit-Maschine bedeutet, dass youd 24-Bit-Werte verwenden. Technisch nur den zweiten Pol von zwei würde den größeren Wert benötigen, aber für Firmware Einfachheit ich in der Regel die gleiche Darstellung, und damit der gleiche Code, für alle Pole eines Filters. Normalerweise schreibe ich eine Unterroutine oder Makro, um eine Filterpol-Operation durchzuführen, dann gelten, dass für jeden Pol. Ob eine Unterroutine oder ein Makro davon abhängt, ob Zyklen oder Programmspeicher in diesem Projekt wichtiger sind. So oder so, ich benutze einige Scratch-Zustand, um NEU in die Subroutine / Makro, die FILT Updates, sondern auch lädt, dass in den gleichen Kratzer NEU war in. Dies macht es einfach, mehrere Pole anzuwenden, da die aktualisierte FILT von einem Pol ist Die NEUE der nächsten. Wenn ein Unterprogramm, ist es sinnvoll, einen Zeiger auf FILT auf dem Weg in, die auf nur nach FILT auf dem Weg nach draußen aktualisiert wird. Auf diese Weise arbeitet das Unterprogramm automatisch auf aufeinanderfolgenden Filtern im Speicher, wenn es mehrmals aufgerufen wird. Mit einem Makro benötigen Sie nicht einen Zeiger, da Sie in der Adresse passieren, um auf jeder Iteration zu arbeiten. Code-Beispiele Hier ist ein Beispiel für ein Makro wie oben für eine PIC 18 beschrieben: Und hier ist ein ähnliches Makro für eine PIC 24 oder dsPIC 30 oder 33: Beide Beispiele sind als Makros mit meinem PIC-Assembler-Präprozessor implementiert. Die mehr fähig ist als eine der eingebauten Makroanlagen. Clabacchio: Ein weiteres Thema, das ich erwähnen sollte, ist die Firmware-Implementierung. Sie können eine einpolige Tiefpassfilter-Subroutine einmal schreiben und dann mehrmals anwenden. Tatsächlich schreibe ich normalerweise solch ein Unterprogramm, um einen Zeiger im Gedächtnis in den Filterzustand zu nehmen, dann ihn voranbringen den Zeiger, so daß er nacheinander leicht aufgerufen werden kann, um mehrpolige Filter zu verwirklichen. Ndash Olin Lathrop Apr 20 12 at 15:03 1. Dank sehr viel für Ihre Antworten - alle von ihnen. Ich beschloss, dieses IIR-Filter zu verwenden, aber dieser Filter wird nicht als Standard-Tiefpaßfilter verwendet, da ich die Zählerwerte berechnen und sie vergleichen muss, um Änderungen in einem bestimmten Bereich zu erkennen. Da diese Werte von sehr unterschiedlichen Dimensionen abhängig von Hardware Ich wollte einen Durchschnitt nehmen, um in der Lage sein, auf diese Hardware spezifischen Änderungen automatisch reagieren. Wenn Sie mit der Beschränkung einer Macht von zwei Anzahl von Elementen zu durchschnittlich leben können (dh 2,4,8,16,32 etc), dann kann die Teilung einfach und effizient auf einem getan werden Low-Performance-Mikro ohne dedizierte Division, weil es als Bit-Shift durchgeführt werden kann. Jede Schicht rechts ist eine Macht von zwei zB: Der OP dachte, er hatte zwei Probleme, die Teilung in einem PIC16 und Speicher für seinen Ringpuffer. Diese Antwort zeigt, dass die Teilung nicht schwierig ist. Zwar adressiert es nicht das Gedächtnisproblem, aber das SE-System erlaubt Teilantworten, und Benutzer können etwas von jeder Antwort für selbst nehmen, oder sogar redigieren und kombinieren andere39s Antworten. Da einige der anderen Antworten eine Divisionsoperation erfordern, sind sie ähnlich unvollständig, da sie nicht zeigen, wie dies auf einem PIC16 effizient erreicht werden kann. Ndash Martin Apr 20 12 at 13:01 Es gibt eine Antwort für einen echten gleitenden Durchschnitt Filter (auch bekannt als Boxcar-Filter) mit weniger Speicher Anforderungen, wenn Sie dont mind Downsampling. Es heißt ein kaskadiertes Integrator-Kamm-Filter (CIC). Die Idee ist, dass Sie einen Integrator, die Sie nehmen Differenzen über einen Zeitraum, und die wichtigsten Speicher-sparende Gerät ist, dass durch Downsampling, müssen Sie nicht jeden Wert des Integrators zu speichern. Es kann mit dem folgenden Pseudocode implementiert werden: Ihre effektive gleitende durchschnittliche Länge ist decimationFactorstatesize, aber Sie müssen nur um Stateize Proben zu halten. Offensichtlich können Sie bessere Leistung erzielen, wenn Ihr stateize und decimationFactor Potenzen von 2 sind, so dass die Divisions - und Restoperatoren durch Shifts und Masken ersetzt werden. Postscript: Ich stimme mit Olin, dass Sie sollten immer erwägen, einfache IIR-Filter vor einem gleitenden durchschnittlichen Filter. Wenn Sie die Frequenz-Nullen eines Boxcar-Filters nicht benötigen, wird ein 1-poliger oder 2-poliger Tiefpassfilter wahrscheinlich gut funktionieren. Auf der anderen Seite, wenn Sie für die Zwecke der Dezimierung filtern (mit einer hohen Sample-Rate-Eingang und Mittelung es für die Verwendung durch einen Low-Rate-Prozess), dann kann ein CIC-Filter genau das, was Sie suchen. (Vor allem, wenn Sie stateize1 verwenden und den Ringbuffer insgesamt mit nur einem einzigen vorherigen Integrator-Wert zu vermeiden) Theres einige eingehende Analyse der Mathematik hinter der Verwendung der ersten Ordnung IIR-Filter, Olin Lathrop bereits beschrieben hat auf der Digital Signal Processing Stack-Austausch (Enthält viele schöne Bilder.) Die Gleichung für diese IIR-Filter ist: Dies kann mit nur Ganzzahlen und keine Division mit dem folgenden Code implementiert werden (möglicherweise benötigen einige Debugging, wie ich aus dem Speicher wurde.) Dieser Filter approximiert einen gleitenden Durchschnitt von Die letzten K Proben durch Einstellen des Wertes von alpha auf 1 / K. Führen Sie dies im vorherigen Code durch die Definition von BITS auf LOG2 (K), dh für K 16 gesetzt BITS auf 4, für K 4 gesetzt BITS auf 2, etc. (Ill Überprüfung der Code hier aufgelistet, sobald ich eine Änderung und Bearbeiten Sie diese Antwort, wenn nötig.) Antwort # 1 am: Juni 23, 2010, um 4:04 Uhr Heres ein einpoliges Tiefpassfilter (gleitender Durchschnitt, mit Cutoff-Frequenz CutoffFrequency). Sehr einfach, sehr schnell, funktioniert super, und fast kein Speicher Overhead. Hinweis: Alle Variablen haben einen Bereich über die Filterfunktion hinaus, mit Ausnahme des übergebenen newInput Hinweis: Dies ist ein einstufiger Filter. Mehrere Stufen können zusammen kaskadiert werden, um die Schärfe des Filters zu erhöhen. Wenn Sie mehr als eine Stufe verwenden, müssen Sie DecayFactor anpassen (was die Cutoff-Frequenz betrifft), um sie zu kompensieren. Und natürlich alles, was Sie brauchen, ist die beiden Zeilen überall platziert, brauchen sie nicht ihre eigene Funktion. Dieser Filter hat eine Rampenzeit, bevor der gleitende Durchschnitt diejenige des Eingangssignals darstellt. Wenn Sie diese Rampenzeit umgehen müssen, können Sie MovingAverage einfach auf den ersten Wert von newInput anstelle von 0 initialisieren und hoffen, dass der erste newInput kein Ausreißer ist. (CutoffFrequency / SampleRate) einen Bereich zwischen 0 und 0,5 aufweist. DecayFactor ist ein Wert zwischen 0 und 1, in der Regel in der Nähe von 1. Single-precision Schwimmer sind gut genug für die meisten Dinge, ich bevorzuge nur Doppel. Wenn Sie mit ganzen Zahlen bleiben müssen, können Sie DecayFactor und Amplitude Factor in Fractional Integers umwandeln, in denen der Zähler als Integer gespeichert wird und der Nenner eine Ganzzahl von 2 ist (so können Sie Bit-Shift nach rechts als die Nenner, anstatt sich während der Filterschleife teilen zu müssen). Zum Beispiel, wenn DecayFactor 0.99, und Sie Ganzzahlen verwenden möchten, können Sie DecayFactor 0.99 65536 64881. Und dann immer wenn Sie multiplizieren mit DecayFactor in Ihrer Filterschleife, nur verschieben Sie das Ergebnis 16. Für weitere Informationen über dieses, ein ausgezeichnetes Buch thats Online, Kapitel 19 auf rekursive Filter: dspguide / ch19.htm PS Für das Moving Average-Paradigma, einen anderen Ansatz für die Einstellung DecayFactor und AmplitudeFactor, die möglicherweise mehr relevant für Ihre Bedürfnisse, können Sie sagen, dass Sie wollen, dass die vorherigen, etwa 6 Artikeln gemittelt, es diskret tun, fügen Sie 6 Elemente und teilen durch 6, so Können Sie den AmplitudeFactor auf 1/6 und DecayFactor auf (1.0 - AmplitudeFactor) einstellen. Antwortete May 14 12 at 22:55 Jeder andere hat kommentiert gründlich über den Nutzen der IIR vs FIR, und auf Power-of-two-Division. Id nur, um einige Implementierungsdetails zu geben. Das untenstehende funktioniert gut auf kleinen Mikrocontrollern ohne FPU. Es gibt keine Multiplikation, und wenn Sie N eine Potenz von zwei halten, ist die gesamte Division ein-Zyklus-Bit-Verschiebung. Basic FIR-Ringpuffer: Halten Sie einen laufenden Puffer der letzten N-Werte und einen laufenden SUM aller Werte im Puffer. Jedes Mal, wenn eine neue Probe kommt, subtrahieren Sie den ältesten Wert im Puffer von SUM, ersetzen Sie ihn durch das neue Sample, fügen Sie das neue SUM zu SUM hinzu und geben Sie SUM / N aus. Modifizierter IIR-Ringpuffer: Halten Sie einen laufenden SUM der letzten N-Werte. Jedes Mal, wenn ein neues Sample eingeht, SUM - SUM / N, fügen Sie das neue Sample hinzu und geben SUM / N aus. Antwort # 1 am: August 28, 2008, um 13:45 Uhr Wenn Sie 399m lesen Sie Recht, you39re beschreiben ein erster Ordnung IIR-Filter der Wert you39re subtrahieren isn39t der älteste Wert, der herausfällt, sondern ist stattdessen der Durchschnitt der vorherigen Werte. Erstklassige IIR-Filter können sicherlich nützlich sein, aber I39m nicht sicher, was du meinst, wenn Sie vorschlagen, dass der Ausgang ist der gleiche für alle periodischen Signale. Bei einer Abtastrate von 10 kHz liefert das Einspeisen einer 100 Hz-Rechteckwelle in ein 20-stufiges Kastenfilter ein Signal, das für 20 Abtastungen gleichmäßig ansteigt, für 30 sitzt, für 20 Abtastungen gleichmäßig sinkt und für 30 sitzt. Ein erster Ordnung IIR-Filter. Ndash Supercat Aug 28 13 am 15:31 wird eine Welle, die scharf anfängt zu steigen und allmählich Niveaus in der Nähe (aber nicht auf) das Eingabe-Maximum, dann scharf beginnt zu fallen und allmählich in der Nähe (aber nicht auf) der Eingabe Minimum. Sehr unterschiedliches Verhalten. Ndash Supercat Ein Problem ist, dass ein einfacher gleitender Durchschnitt kann oder auch nicht nützlich sein. Mit einem IIR-Filter können Sie einen schönen Filter mit relativ wenigen Calcs erhalten. Die FIR Sie beschreiben kann Ihnen nur ein Rechteck in der Zeit - ein sinc in freq - und Sie können nicht die Seitenkeulen zu verwalten. Es kann lohnt sich, in ein paar ganzzahlige Multiplikatoren zu werfen, um es eine schöne symmetrische abstimmbare FIR, wenn Sie die Zeitschaltuhren ersparen können. Ndash ScottSeidman: Keine Notwendigkeit für Multiplikatoren, wenn man einfach jede Stufe der FIR entweder den Durchschnitt der Eingabe auf diese Stufe und ihre vorherigen gespeicherten Wert, und dann speichern Sie die Eingabe (wenn man hat Der numerische Bereich, man könnte die Summe anstatt den Durchschnitt verwenden). Ob das besser ist als ein Box-Filter, hängt von der Anwendung ab (die Sprungantwort eines Boxfilters mit einer Gesamtverzögerung von 1ms wird zum Beispiel eine böse d2 / dt-Spitze aufweisen, wenn der Eingang geändert wird, und wieder 1ms später, wird aber haben Die minimal mögliche d / dt für einen Filter mit einer Gesamtverzögerung von 1ms). Ndash supercat Wie mikeselectricstuff sagte, wenn Sie wirklich brauchen, um Ihren Speicherbedarf zu reduzieren, und Sie dont dagegen Ihre Impulsantwort ist eine exponentielle (anstelle eines rechteckigen Puls), würde ich für einen exponentiellen gleitenden durchschnittlichen Filter gehen . Ich nutze sie ausgiebig. Mit dieser Art von Filter, brauchen Sie nicht jeden Puffer. Sie brauchen nicht zu speichern N Vergangenheit Proben. Nur einer. So werden Ihre Speicheranforderungen um einen Faktor von N reduziert. Auch brauchen Sie keine Division für das. Nur Multiplikationen. Wenn Sie Zugriff auf Gleitpunktarithmetik haben, verwenden Sie Fließkomma-Multiplikationen. Andernfalls können ganzzahlige Multiplikationen und Verschiebungen nach rechts erfolgen. Allerdings sind wir im Jahr 2012, und ich würde Ihnen empfehlen, Compiler (und MCUs), mit denen Sie mit Gleitkommazahlen arbeiten können. Abgesehen davon, dass mehr Speicher effizienter und schneller (Sie dont haben, um Elemente in jedem kreisförmigen Puffer zu aktualisieren), würde ich sagen, es ist auch natürlich. Weil eine exponentielle Impulsantwort besser auf die Art und Weise reagiert, wie sich die Natur verhält, in den meisten Fällen. Ein Problem mit dem IIR-Filter fast berührt von Olin und Supercat, aber anscheinend von anderen ignoriert ist, dass die Rundung nach unten führt einige Ungenauigkeiten (und möglicherweise Bias / Trunkierung). Unter der Annahme, dass N eine Potenz von zwei ist und nur ganzzahlige Arithmetik verwendet wird, beseitigt das Shift-Recht systematisch die LSBs des neuen Samples. Das bedeutet, dass, wie lange die Serie jemals sein könnte, wird der Durchschnitt nie berücksichtigen. Nehmen wir z. B. eine langsam abnehmende Reihe (8,8,8,8,7,7,7,7,6,6) an und nehmen an, daß der Durchschnitt tatsächlich 8 ist. Die Faust 7 Probe bringt den Durchschnitt auf 7, unabhängig von der Filterstärke. Nur für eine Probe. Gleiche Geschichte für 6, usw. Jetzt denke an das Gegenteil. Die serie geht auf. Der Durchschnitt bleibt auf 7 für immer, bis die Probe groß genug ist, um es zu ändern. Natürlich können Sie für die Bias korrigieren, indem Sie 1 / 2N / 2, aber das nicht wirklich lösen, die Präzision Problem. In diesem Fall wird die abnehmende Reihe für immer bei 8 bleiben, bis die Probe 8-1 / 2 (N / 2) ist. Für N4 zum Beispiel, wird jede Probe über Null halten den Durchschnitt unverändert. Ich glaube, eine Lösung für das implizieren würde, um einen Akkumulator der verlorenen LSBs halten. Aber ich habe es nicht weit genug, um Code bereit, und Im nicht sicher, es würde nicht schaden, die IIR Macht in einigen anderen Fällen der Serie (zum Beispiel, ob 7,9,7,9 würde durchschnittlich 8 dann). Olin, Ihre zweistufige Kaskade würde auch eine Erklärung brauchen. Halten Sie zwei durchschnittliche Werte mit dem Ergebnis der ersten in die zweite in jeder Iteration eingezogen halten. Was ist der Vorteil davon

No comments:

Post a Comment