Der EWMA-Ansatz hat ein attraktives Merkmal: Er benötigt relativ wenig gespeicherte Daten. Um unsere Schätzung an jedem Punkt zu aktualisieren, benötigen wir nur eine vorherige Schätzung der Varianzrate und des jüngsten Beobachtungswertes. Ein weiteres Ziel der EWMA ist es, Veränderungen in der Volatilität nachzuvollziehen. Für kleine Werte beeinflussen jüngste Beobachtungen die Schätzung zeitnah. Für Werte, die näher an einem liegen, ändert sich die Schätzung langsam auf der Grundlage der jüngsten Änderungen in den Renditen der zugrundeliegenden Variablen. Die von JP Morgan erstellte und öffentlich zugängliche RiskMetrics-Datenbank nutzt die EWMA zur Aktualisierung der täglichen Volatilität. WICHTIG: Die EWMA-Formel geht nicht von einem lang anhaltenden durchschnittlichen Varianzniveau aus. So bedeutet das Konzept der Volatilität Reversion nicht von der EWMA erfasst. Die ARCH / GARCH Modelle sind dafür besser geeignet. Ein sekundäres Ziel der EWMA ist es, Veränderungen in der Volatilität nachzuvollziehen, so dass für kleine Werte die jüngsten Beobachtungen die Schätzung sofort beeinflussen, und für Werte, die näher bei 1 liegen, ändert sich die Schätzung langsam auf die jüngsten Änderungen in den Renditen der zugrunde liegenden Variablen. Die RiskMetrics-Datenbank (erstellt von JP Morgan), die 1994 veröffentlicht wurde, verwendet das EWMA-Modell zur Aktualisierung der täglichen Volatilitätsschätzung. Das Unternehmen festgestellt, dass über eine Reihe von Marktvariablen, gibt dieser Wert der Prognose der Varianz, die am nächsten zu realisierten Varianz Rate kommen. Die realisierten Varianzraten an einem bestimmten Tag wurden als gleichgewichteter Durchschnitt der folgenden 25 Tage berechnet. Um den optimalen Wert von lambda für unseren Datensatz zu berechnen, müssen wir die realisierte Volatilität an jedem Punkt berechnen. Es gibt mehrere Methoden, so wählen Sie ein. Als nächstes wird die Summe der quadratischen Fehler (SSE) zwischen der EWMA-Schätzung und der realisierten Volatilität berechnet. Schließlich minimieren die SSE durch Variieren des Lambdawertes. Klingt einfach Es ist. Die größte Herausforderung besteht darin, einen Algorithmus zur Berechnung der realisierten Volatilität zu vereinbaren. Zum Beispiel wählten die Leute bei RiskMetrics die folgenden 25 Tage, um die realisierte Varianzrate zu berechnen. In Ihrem Fall können Sie einen Algorithmus wählen, der Tägliche Volumen-, HI / LO - und / oder OPEN-CLOSE Preise nutzt. Q 1: Können wir EWMA verwenden, um die Volatilität mehr als einen Schritt voraus zu schätzen (oder prognostizieren) Die EWMA-Volatilitätsdarstellung setzt keine langfristige Durchschnittsvolatilität voraus, so dass die EWMA für jeden Prognosehorizont über einen Schritt hinaus eine Konstante zurückgibt Wert: Berechnung der historischen Volatilität mittels EWMA Volatilität ist die am häufigsten verwendete Risikomessung. Die Volatilität in diesem Sinne kann entweder eine historische Volatilität (eine aus früheren Daten beobachtete) oder eine Volatilität (beobachtet aus Marktpreisen von Finanzinstrumenten) sein. Die historische Volatilität kann auf drei Arten berechnet werden: Einfache Volatilität, exponentiell gewichtetes Wachstum Durchschnitt (EWMA) GARCH Einer der großen Vorteile von EWMA ist, dass es mehr Gewicht auf die jüngsten Erträge bei der Berechnung der Renditen gibt. In diesem Artikel werden wir untersuchen, wie die Volatilität mit EWMA berechnet wird. Wenn wir die Aktienkurse anschauen, können wir die täglichen logarithmischen Renditen unter Verwendung der Formel ln (P i / P i -1) berechnen, wobei P für P steht Jeder Tag schließt Aktienkurs. Wir müssen das natürliche Protokoll verwenden, weil wir die Renditen kontinuierlich erweitern wollen. Wir haben jetzt täglich Rücksendungen für die gesamte Preisreihe. Schritt 2: Platzieren Sie die Rückkehr Der nächste Schritt ist die nehmen das Quadrat der langen Rückkehr. Dies ist tatsächlich die Berechnung der einfachen Varianz oder der Volatilität, die durch die folgende Formel dargestellt wird: Hier steht u für die Rendite und m für die Anzahl der Tage. Schritt 3: Gewichte Zuweisen Gewichte zuweisen, so dass die jüngsten Renditen ein höheres Gewicht haben und ältere Renditen weniger Gewicht haben. Dazu benötigen wir einen Faktor Lambda (), eine Glättungskonstante oder einen persistenten Parameter. Die Gewichte werden als (1-) 0 zugewiesen. Lambda muss kleiner als 1 sein. Risikometrik verwendet Lambda 94. Das erste Gewicht ist (1-0,94) 6, das zweite Gewicht ist 60,94 5,64 und so weiter. In EWMA summieren sich alle Gewichte auf 1, jedoch sinken sie mit einem konstanten Verhältnis von. Schritt 4: Multiplizieren Rückkehr-quadriert mit den Gewichten Schritt 5: Nehmen Sie die Summe von R 2 w Dies ist die abschließende EWMA-Varianz. Die Volatilität ist die Quadratwurzel der Varianz. Der folgende Screenshot zeigt die Berechnungen. Das obige Beispiel, das wir gesehen haben, ist der von RiskMetrics beschriebene Ansatz. Die verallgemeinerte Form der EWMA kann als die folgende rekursive Formel dargestellt werden: Schätzung des Value at Risk Das von JP Morgans RiskMetrics-System mit der EWMA-Methode (exponentiell gewichtete gleitende Durchschnitt) signifikant vorhergesagte Prognoseverfahren, Value-at-Risk (VaR), hat sich als beliebt erwiesen Maß für den Grad der verschiedenen Risiken im Finanzrisikomanagement. In diesem Beitrag schlagen wir einen neuen Ansatz als skewed-EWMA vor, um die sich verändernde Volatilität zu prognostizieren und ein adaptiv effizientes Verfahren zur Schätzung des VaR zu formulieren. Anders als die JP-Morgans-Standard-EWMA, die aus einer Gaußschen Verteilung stammt und die robuste EWMA von Guermat und Harris aus einer Laplace-Verteilung, motivieren und leiten wir unsere schiefe-EWMA-Prozedur aus einer asymmetrischen Laplace - Wo sowohl Schiefe als auch schwere Schwänze bei der Rückgabe und deren zeitliche Veränderung in der Praxis berücksichtigt werden. Ein EWMA-basiertes Verfahren, das den die Schiefe und Kurtosis steuernden Formparameter adaptiv an die Verteilung anpasst, wird vorgeschlagen. Backtesting Ergebnisse zeigen, dass unsere vorgeschlagene skewed-EWMA-Methode bietet eine brauchbare Verbesserung der Prognose VaR. Wenn Sie Probleme beim Herunterladen einer Datei haben, überprüfen Sie, ob Sie die richtige Anwendung haben, um sie zuerst anzuzeigen. Bei weiteren Problemen lesen Sie bitte die IDEAS-Hilfeseite. Beachten Sie, dass diese Dateien nicht auf der IDEAS-Website sind. Bitte haben Sie Geduld, da die Dateien groß sein können. Paper von University of Sydney Business School, Disziplin der Business Analytics in ihrer Reihe Working Papers mit der Nummer 01/2010. Wenn Sie eine Korrektur anfordern, erwähnen Sie bitte diese Elemente behandeln: RePEc: syb: wpbsba: 2123/8170. Siehe allgemeine Informationen zur Korrektur von Material in RePEc. Wenn Sie diesen Artikel verfasst haben und noch nicht bei RePEc registriert sind, empfehlen wir Ihnen, dies hier zu tun. Für technische Fragen zu diesem Artikel oder zur Korrektur seiner Autoren, Titel, Zusammenfassung, Bibliographie oder Download-Informationen kontaktieren Sie bitte: (Artem Prokhorov) Dadurch können Sie Ihr Profil mit diesem Element verknüpfen. Es erlaubt Ihnen auch, potenzielle Zitate zu diesem Punkt zu akzeptieren, dass wir uns unsicher sind. Wenn Referenzen vollständig fehlen, können Sie sie über dieses Formular hinzufügen. Wenn die vollständigen Referenzen ein Element auflisten, das in RePEc vorhanden ist, aber das System nicht mit ihm verknüpft ist, können Sie mit diesem Formular helfen. Wenn Sie über fehlende Elemente wissen, können Sie uns helfen, diese Links zu erstellen, indem Sie die entsprechenden Referenzen in der gleichen Weise wie oben hinzufügen. Wenn Sie ein registrierter Autor dieses Artikels sind, können Sie auch die Registerkarte Zitate in Ihrem Profil überprüfen, da es einige Zitate gibt, die auf die Bestätigung warten. Bitte beachten Sie, dass Korrekturen einige Wochen dauern können, um die verschiedenen RePEc-Dienste zu filtern. Mehr Leistungen Folgen Serien, Zeitschriften, Autoren amp mehr Neue Papiere per E-Mail Neuzugänge zu RePEc abonnieren Autor-Registrierung Öffentliche Profile für Wirtschaftswissenschaftler Verschiedene Rankings der Forschung in Wirtschaftswissenschaften amp verwandte Bereiche Wer war ein Student von wem, mit RePEc RePEc Biblio Kuratierte Artikel amp Papiere verschiedene Ökonomie-Themen Hochladen Sie Ihr Papier auf RePEc und IDEAS EconAcademics Blog-Aggregator für die Ökonomie Forschung Plagiat Fall Plagiat in Ökonomie Job-Marktpapiere RePEc Arbeitspapier-Serie auf dem Arbeitsmarkt Fantasy League Vorgeben Sie sind an der Spitze einer Volkswirtschaft Abteilung Services von den StL-Fed-Daten, Forschung, apps amp mehr von der St. Louis Fed
No comments:
Post a Comment